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Abstract. Using the Backlund transformations, we have obtained infinitesimal trans- 
formations about an n-soliton solution of the KdV equation whch form a complete set. They 
are shown to be the squares of eigenfunctions of the Schrodinger equation with the n-soliton 
as the potential. It is also shown that the conserved densities for an n-soliton are n in 
number. 

1. introduction 

The infinitesimal transformation (IT) about any solution U(x, t )  of the equation 

U , = K ( U )  (1.1) 
is defined as a function Y(x, t )  such that U(x, t )  + eY(x ,  t ) ,  E << 1, is also a solution of 
(1.1). K is, in general, a nonlinear operator. Wadati (1978) has obtained a countable 
infinity of IT about the solution of the K d v  equation and established a one-to-one 
correspondence between the IT and the infinite number of conservation laws. Rubin- 
stein (1970) has obtained IT about a one-soliton solution of the sine-Gordon (SG)  
equation which form a complete set and studied the linear stability of a soliton. Fogel et 
a1 (1977) have used this complete set of IT to study various physical phenomena giving 
rise to perturbed SG equations. 

Case (1978) has shown that one IT can be obtained about a solution of a general 
nonlinear equation from each conserved density. The countable infinity of conserved 
densities for a K d v  equation gives a countable infinity of IT about any solution. These IT, 
however, would not form a complete set. This will be seen for the n-soliton solution 
from the results of this paper. In this case this countable infinity of IT consists of linear 
combinations of n IT and these do not form a complete set. As will be shown, a 
continuum of IT about an n-soliton together with the n IT mentioned above form a 
complete set. The complete set of IT about a one-soliton solution of the SG equation 
(Rubinstein 1970) also consists of one discrete bounded IT and a continuum of IT. The 
countable infinity of IT about any solution of the SG equation degenerates to this one 
discrete IT for a one-soliton solution. 

In this paper, using the Backlund transformation (BT) of the K d v  equation 
(Wahlquist and Estabrook 1973), we construct IT about W1,n(x, t )  (where the n-soliton 
solution of the K d v  equation Ul.n(x, t) = -[ WlSn(x, t ) Ix ,  the subscript x denoting a 
partial derivative) which form a complete set. The IT are shown to be the squares of 
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eigenfunctions of the Schrodinger equation with the n -soliton as the potential. Further, 
the IT are eigenfunctions of an operator T (  U). Generally T (  U) acting on an IT about 
W(x, t )  (U(x,  t )  = - W,(x, t )  is a solution of the K d v  equation) gives another IT about 

We show that, about an n-soliton, the countable infinity of IT obtained by Wadati 
(1978) consists of linear combinations of n IT about the n-soliton. It then follows that 
there are only n conserved quantities for an n-soliton. 

Since the expressions for the IT are obtained recursively in this paper, we see how the 
eigenfunctions of the Schrodinger equation change when the potential changes from an 
(n - 1)-soliton to an n-soliton. 

In 3 2, we derive the differential equation for the IT about a ‘new’ solution W‘(x, t) of 
(2.2) in terms of IT about an ‘old’ solution W(x, t ) .  In § 3, after fixing the notations, IT 

about Wl,n(x, t)  are derived. It is shown that IT can be obtained from the solution of a 
second-order differential equation. In § 4, the IT are shown to be equal to the squares of 
the eigenfunctions of the Schrodinger equation. The completeness of the IT is 
established. In § 5 we show that there are only n conserved quantities for an n-soliton. 

W(X, t ) .  

2. Differential equation for the IT 

Following Wahlquist and Estabrook (1973) we consider the K d v  equation 

U, + 1 2 u u ,  + U,,, = 0. 

With U(x,  t) = -W,(x, t), the equation for W(x,  t) is 

W, - 6( W,)* + W,,, = 0.  

(2.1) 

(2.2) 

The IT Y(x,  t )  about W(x, t)  satisfies the equation 

Y, + 12 UY, + Y,,, = 0. (2.3) 

The first half of the BT is (Wahlquist and Estabrook 1973) 

W:+ W , = ( W ’ -  W)’-kk2.  (2.4) 

The differential equation for Z ( x ,  t), an IT about W’(x, t), in terms of Y(x, t ) ,  an IT 
about W(x, t), is, from (2.4), 

(2.5) 

The second half of the BT and the corresponding equations for Z ( x ,  t )  and Y(x,  t )  are 
needed only to show that Z ( x ,  t )  obtained from (2.5) is an IT about W’(x, t) and are not 
given here. Equation (2.5) is the basic equation to derive the IT. 

z, + Y, = 2( W ’ -  W)(Z  - Y ) .  

For W(x, r )  = 0, a solution of (2.2), (2.3) reduces to 

Y, + Y,,, = 0. (2.6) 

Its solutions are 

Y = exp[i(Kx + w t ) ]  (2.7) 

with the dispersion relation 
3 

W = K .  
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We use (2.5) repeatedly, starting with W(x,  t) = 0 and Y(x, t )  given by (2.7), to obtain 
the IT about Wl,,(x, t ) .  

3. IT about W1,"(x, t )  

3.1. Notation 

We represent an n-soliton with parameters kl, kz,. . . , k, by UI,,. Ul,,(r) will 
represent an (n - 1)-soliton with parameters k,, 1 s p d n, p # r. Ul,,(r, s) will similarly 
represent an (n-2)-soliton. A one-soliton with parameter k, will be 
sented, for convenience, by U, instead of Ul,,(l, 2 , .  . . , p - 1, p + 1 , .  

repre- 
. . , n). 

(3.1) 

( 3 . 2 ~ )  

(3.2b) 

(3.3) 

where for convenience we write c ~ ~ , , ( K ;  1,2,  . . . , p - 1, p + 1 , .  . . , n) as (Y , (K) .  K takes 
all real values. We shall show that the IT about Wl,,, Wl,,(r), etc, are related to C Y ~ , , ( K ) ,  

w , , ( K ;  r ) ,  etc. 
It is easy to verify that ( Y , ( K )  satisfies the differential equation 

CYxx +iKax +2u,ff = 0. 

a,, + iKCY, + 2 Ul," (r)a = 0 

(3.4) 

Assuming C X ~ , , ( K ;  r )  satisfies 

(3.5) 

the result obtained by differentiating it and ( 3 . 2 ~ )  we can show that ( Y ~ , , ( K )  satisfies the 
equation 

(3.7) ax. + iK0, + 2 Ul,"ff = 0. 

One of its solutions is obtained from (3.2) and (3.3). The other solution will be 
discussed in the sequel. 

We shall now show that 

Y l , , ( K )  = (exp[i(Kx + ~ ~ ) I ) ( W , ~ ( K ) ) ~  (3.8) 
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is an IT about W1," obtained by successive applications of (3.1), starting from the IT 
Y = exp[i(Kx +ut)] about the zero solution of (2.2). 

With 
YAK) = (exp[i(Kx + u t ) l ) ( ( ~ , ( ~ ) ) ~  (3.9) 

Y , ( K ) / ( K ~ + ~ ~ ? )  is a solution of (3.1) with W1," = W, (so that Wl,,,(r)=O), Y =  
exp[i(Kx +ut)] (an IT about the zero solution Wl,,,(r) = 0)  and k = k,. 

Thus Y,(K) is an IT about WJx, t). Using (3.5) and (3.6) it can be verified that 
Y I , " ( K ) / ( K ' + ~ ~ ~ )  is a solution of (3.1) with 

(3.10) 

Therefore our contention is proved. Here Y1, , , (~ ; r )  is an IT about W1,"(r). We wish to 
remark that L Y ~ , , , ( K )  and hence Y1 , " (~ )  is independent of the value of r, 1 s  r 6 n, in 
(3.2). The proof is inductive. It is straightforward but lengthy and is not reproduced 
here. 

Henceforward we omit the term exp(iut) with the understanding that it is always 
present with exp(inx). 

The second linearly independent solution of (3.7), G l , " ( ~ ) ,  is given by 

Y = Y ~ , , ( K ;  r )  = (exp[i(Kx + w t ) ] ) ( a l , , ( ~ ;  r ) ) 2 .  

c ? ~ , , , ( K )  = exp(-irc.x)al,,(-K). (3.11) 

This can be proved by transforming the dependent variable in (3.71, 

LY = exp(-iKx)@. (3.12) 

The IT obtained by using (3.11) in (3.8) is 

Ti," ( K )  = (exP(iKx ) ) ( Z I , ~  ( K ) l 2  

= (exp (-iKx ) ) (a  ,,, (- K = 1'1, ,, (- K ) . (3.13) 

Since K takes all real values we do not get any new IT from the linearly independent 
solution G ( K ). 

3.3. IT for complex values of K-the discrete case 

In the last subsection we considered K real. However (3.8) with K = 2ik,, 1 s r s n, are 
also IT about wl,". 

To see this, we find using ( 3 . 2 ) ,  (3.5) and (3.6) that with K = 2ik, a1,,(2ik,) satisfies 

(3.14) a,/a = WI,,, - Wl,,,(r) + k,. 

(3.15) 

Comparing (3.15) and (3.16) we see that Y1,,(2ik,) are the IT about W1," obtained by 
starting from the identity IT about Wl,,, (r). There are n IT corresponding to k ,  1 S r G n. 
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Using (3.6) and the following result due to Wahlquist and Estabrook (1973), 

(3.17) 

we can evaluate the integral in (3.15). Thus an explicit expression can be obtained for 
Y1,n(2ikr): 

kPYi,n(2ikr)= Ur/[(Wl,n(r)- W1,n(r1))2(W1,n(r, r1)- Wl,n(rl, r2)I2 * 

x (Wi,,,(r, r1, . . , m - 2 ) -  Wl.n(r1, r2, . . . , rn-1)121 (3.18) 

where (rl, r2, . . . , rnPl) is some permutation of (1,2, , . . , r - 1, r + 1, . . . , n). We thus 
get (n - l ) !  different forms for Yl,n(2ikr). 

The other linearly independent solution of (3.7) for K = 2ikr diverges and will not 
give an IT. 

3.4. The operator T (  U) and its eigenfunctions 

We shall show that Yl,"(K) are eigenfunctions of the operator 

T ( U ) =  -(a 1 2 + 2 U - 1 x d z U z )  a2 
(3.19) 

with eigenvalues $ K ~ ,  where K is real or K = 2ik, 1 S r S n. 

in (3.19), 
The result is obviously true for the IT exp(iKx) about the zero solution. With U = 0 

T(O)(exp(iKx)) = +K' exp(iKx). (3.20) 

It is tedious but direct to show that if Z ( x ,  t )  is a solution of (2.5) for a Y(x, t )  then 
T (  U') [Z]  is a solution of (2.5) with Y(x, t) replaced by T (  U)[ Y]. Assume now that 

(3.21) 

Substituting for Y(x, t) in (3.1), the RHS and the LHS successively, and using the result 
stated above equation (3.21) we obtain 

(3.22) 

~ ( ~ i , , ( r ) ) (  Yl,n(r, K ) )  = i ~ ' Y l , ~ ( r ,  K ) .  

T ( U1 ,n ) ( y1 .n ( K  >> = $K YI ,n ( K  * 

For K = 2ikr we have 

T(Ui,n)(Yi,n(2ikr)) = - krYi,n(2ikr). (3.23) 

The result is proved. 
The adjoint T+( U) of T(  U )  is 

(3.24) 

and for any f ( x )  

T+(U)(f , (X))  = -(ifxxx +2Ufx + U& (3.25) 

which is the recursion relation obtained by Wadati (1978) for IT about any solution 
U(x, t )  of the Kdv  equation. Any differences in the coefficients in (3.25) and in the work 
of Wadati (1978) arise because we have a factor 12 in the Kdv  equation (2.1) instead of 
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6. We have done this so as to use the results of Wahlquist and Estabrook (1973) without 
any change. 

From the fact that T'( U) generates IT about U(X,  t )  and the relation 

a[T(U)(f(x)) l lax = T+(U)(fX(X)) (3.26) 

it follows that T (  U) acting on an IT about W(x,  t) generates another IT about W ( X ,  t ) .  

4. Relation of (3.7) to the Schriidinger equation and completeness of IT 

Using (3.7) it is seen that 

rl/ = (exP[%(KX)l)a1,n(K) (4.11 

satisfies the Schrodinger equation 

$xx+(2u1,n +$K2)$=o. (4.2) 

The squares of the two independent solutions rl/ and 4, for a given K real, are, using 
(3.8) and (4.1), 

$ 2 =  Yi,"(K) (4.3a) 

i j 2  = Yl,n(-K). (4.36) 

Since WI," is invariant to change of sign of k, we see from (3.15) that 

Y1,,(2ik,) = Y1,n(-2ik,). (4.4) 

$'I K = - 2 i k ,  = rl/21 K = 2 i k ,  = $41 K =*2ik, = Y I , ~  (2ik,). (4.5) 

It has beenshownbyKaup (1976) that 1/12(~, x ) ,  (i;'(~, x), (C121x=Zik,, 4 * I K = - 2 i k r 5  r l / J I K = + 2 i k ,  

form a complete set. Combining this result with (4.3) and (4.3,  we have Y1, , , (~)  for all 
real K and K = 2ik, 1 s r s n, form a complete set. 

Thus one could obtain a complete set of IT about W1," by solving (4.2). U1,,, is a 
reflectionless potential and (4.2) has been solved by Kay and Moses (1956). On the 
other hand, the method described here using the BT is an alternative way of obtaining 
the eigenfunctions of (4.2). It has the advantage of being a recursive definition and we 
see how the eigenfunctions of (4.2) change when the potential changes from an ( n  - 1)- 
soliton to an n-soliton,. 

Combining the results of this section and Q 3.4 we see that the squares of the 
eigenfunctions of the Schrodinger equation, with U1,,, as potential, are eigenfunctions 
of T(U1,"). That this result is true for any solution of V(x, t) has been shown by 
Ablowitz et a1 (1974) and Newel1 and Flaschka (1975). In these cases, however, explicit 
expressions for the eigenfunctions cannot be obtained. 

Thus for the discrete eigenvalues K = 2ik, from (4.3) and (4.4), 

5. Finiteness of conserved densities for n -soliton 

Gardner et a1 (1974) have shown that 
n 

m = l  
U1,n=-4 1 kmrl/'m (5.1) 
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where 1/1, is an eigenfunction of the Schrodinger equation with U,,,, as the potential and 
(-k:) as the eigenvalue. A generalisation of (5.1) to other nonlinear equations and to 
non-soliton solutions has been given by Newell (1978). From (4.5) and (5.1) it follows 
that Ul,, is a linear combination of the n IT corresponding to the n discrete eigenvalues 
of (4.2). 

From (3.23), (3.26) and (4.5) it follows that (&,)x,  m = 1, . . . , n, are eigenfunctions 
of T'( U,,,,). Now (T'( U,,,))", p = 0, 1, . . . ,a, acting on ( U1,,)x generate the count- 
able infinity of IT about Ul,n obtained by Wadati (1978). Differentiating (5.1) with 
respect to x and applying (T'( U,,,))" on both sides we see that the countable infinity of 
IT about U,,,, consists of all linear combinations of the n functions (&,)x,  m = 1, . . . , n. 
Since there is a conservation law associated with (T'(U1,,))P(Ul,n)x,  for each p ,  it 
follows that there are only n conserved densities for the n-soliton. 

A special case of this result has been proved by Gardner et a1 (1974). They have 
shown that, for the one-soliton, all conserved densities are proportional to the one- 
soliton. 

6. Conclusions and comments 

Using the BT we have obtained the IT about an n -soliton of the Kdv equation. These IT 
are shown to be squares of eigenfunctions of the Schrodinger equation with potential 
U,,,,. The IT are shown to form a complete set. Since the expression for the IT is 
recursive, we know how the eigenfunctions change as the potential in the Schrodinger 
equation changes from an (n - 1)-soliton to an n-soliton. Further it has been shown 
that the number of conserved quantities for an n-soliton are n in number. 

It is possible to extend the results of this paper to other nonlinear equations. We 
have explicitly obtained (Aiyer 1981) the IT about the one-soliton solution of the SG 
equation in terms of the squares of the eigenfunctions of the corresponding Zakharov- 
Shabat equations. These results agree with those obtained by Rubinstein (1970). This 
also shows that the basis functions chosen for the solution of the perturbed SG equation 
by Fogel et a1 (1977) on the one hand and by Kaup and Newell (1978) on the other are 
related. 
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